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A model of corrosion fatigue is proposed which takes into account the main phenomena of a mechanical nature, namely, the 
transfer of the active agent from the month of the crack to its tip, the accumulation of mechanical damage due to cyclic loads 
and the breakdown of the stability conditions in the body-with-cracks - load-environment system as the reason for the propagation 
of the crack tip. Particular attention is devoted to the mechanism by which active agent is transferred. In addition to diffusion, 
convective transfer as a consequence of the change in the shape and dimensions of the crack cavity IS taken into account. The 
results of modelling are supplemented with diagrams, which relate the rate of growth of the crack with the range of the stress 
intensity factor, the concentration of the agent at the mouth of the crack and the characteristics of the cycle, equal to the ratio 
of the extremal values of the applied stresses in each cycle. The results are compared with experlmental data. 0 2002 Elsevler 
Science Ltd. All rights reserved. 

Corrosion fatigue, i.e. the growth of cracks under the combined action of cyclic loads and an aggressive 
environment, is the result of the interaction of a number of mechanical, physicochemical and 
electrochemical processes. The qualitative side of processes of a non-mechanical nature has been 
investigated in some detail by specialists in the area of metal corrosion and those applied areas for which 
corrosion fatigue is related to a number of phenomena which have a considerable effect on reliability, 
safety and longevity of industrial units [l-3]. However, purely mechanical factors also play a decisive 
role in corrosion fatigue. 

Among the mechanical phenomena which accompany the growth of corrosion fatigue cracks and which 
largely determine their rate of growth, we can distinguish three groups; the transfer of aggressive agent 
from the mouth of the crack to its tip, the accumulation of mechanical damage in the active zone (around 
the crack tip) and, possibly, in the far field, since the tip of the crack may progress as far as desired 
during growth, the balance of forces and energy in the body-with-cracks - load system, on which the 
stability of the system and, consequently, the possibility of crack growth, depend, and also the extent 
of its progress. Chemical and electrochemical phenomena are outside the scope of this list. They include 
direct solution, anode and cathode electrochemical reactions, various forms of embrittlement etc. When 
analysing corrosion fatigue from the point of view of continuum mechanics, one must consider 
phenomena of a non-mechanical nature from a purely phenomenological point of view. This approach 
is even more justified by the fact that in corrosion fatigue mechanical and physicochemical damage occur 
concurrently, affecting the mechanical properties of the material in the active zone, for example, reducing 
the value of the specific work of the damage or increasing the yield point. 

A theory of the growth of fatigue cracks was proposed in [4], based on a synthesis of fracture mechanics 
and the mechanics of the accumulation of scattered damage. The growth of macroscopic cracks was 
regarded as the result of the interaction of the accumulation of microdamage and the stability conditions 
of the damaged body as a mechanical system. One of the problems consists of determining the 
generalized forces which occur in the equilibrium and stability conditions of the body-with-cracks - load 
system. In linear fracture mechanics quantities like the intensity of the release of energy and the&integral 
play the role of such generalized forces. 

A calculation of the generalized forces in fatigue fracture mechanics involves an isochronous variation 
of the,state of the body-with-cracks load system. In this variation it is necessary to take into account 
the prehistory of the damage, deformation and accumulation of microdamage and the crack growth. 
A detailed account of the theory can be found in [5-71. In the case of corrosion fatigue cracks and 
corrosion cracking under stress it is necessary to include in the model, damage of non-mechanical origin, 
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supplementing the system of governing relations by equations which describe the process by which 
corrosion damage builds up. 

Attempts to provide a mathematical model of corrosion fatigue and corrosion cracking under stress 
were first made in [8-11]. In [10] insufficient attention was paid to the transfer of the agent from the 
mouth of the crack to its tip. More exactly, instead of the transfer equations, phenomenological relations 
were used, which connect the concentration at the mouth with the concentration at the tip. 

The role of mass transfer in the crack cavity changes considerably depending on its depth. For fine 
cracks (for so-called crevice corrosion) the concentration at the crack tip may be identical with the 
concentration in the surroundings. For deep cracks, mechanical damage is the predominant factor, so 
the problem of mass transfer plays a secondary role. From the point of view of this problem, cracks of 
medium depth, for example, from I to 10 ram, are of the greatest interest. In addition to the diffusion 
mechanism, a purely hydrodynamic mechanism, the role of which increases in the case of cyclic loading, 
acquires considerable importance. A fatigue crack changes its form and volume within each cycle. In 
this case some of the agent is removed from the cavity and a new batch of agent enters into it in the 
next opening. This "pump" effect increases the mass transfer process, making the concentration at the 
tip of the crack close to its value in the surroundings. On the other hand, agent is absorbed at the tip 
(partly - and also on the side walls of the crack). Under these conditions an analysis of the effect of 
mass transfer on the growth of corrosion fatigue cracks becomes of particular interest. 

1. MASS T R A N S F E R  TO THE CRACK TIP 

Consider a surface crack of mode I under the conditions of the plane problem. The body is loaded "at 
infinity" by cyclic stresses o=(t) with extremal values in each cycle of o max and o mm and a cycle 
characteristic R = (ymin/(ymax. We will denote the depth of the crack by a(t) and the crack profile by 
h(x, t). In general, the configuration of the fatigue crack profile may be extremely complex (Fig. la) 
Henceforth, we will use simplified configurations, in particular, those shown in Fig. l(b-d). 

Mass transfer consists of a combination of several processes, such as diffusion, due to the concentration 
gradient of the aggressive agent, and ion migration, governed by the electrochemical potentials. In this 
paper we will consider the case when electrochemical effects are negligibly small. The concentration 
of "fresh" agent, i.e. at the mouth to the crack, will be denoted by ce, the concentration at the tip will 
be denoted by ct and the concentration at 0 < x < a will be denoted by c(x, t). 
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The crack opening is small compared with it length and hence transfer of agent inside the crack will 
be described by the equation 

3(hc) +v - -  (1.1) 
/)t /)x ~x ~, ~x) 

Here v(x, t) is the rate of convective transfer of agent in the cavity in the direction of the x axis and 
D is the diffusion coefficient. The boundary conditions when first-order reactions occur at the tip take 
the form 

c = c  e, X=ee; DO(hc) /Ox=kh(cs -c  ), x = a  (1.2) 

with a reaction (or adsorption) rate coefficient at the crack tip k. Here Cs is the threshold concentration 
corresponding to a certain equilibrium state or saturation state. In the case of an incompressible fluid 
and one-dimensional flow, to determine the rate v it is sufficient to use the mass conservation law. We 
then arrive at the formula 

('xt(t) 
V(X,t)= h<x,~,, ~tc) l ! h(~,t)d~) (1.3) 

Cyclic renewal of the composition of the medium and also reaction of the aggressive agent with the 
solid phase occurs in the crack cavity. The first of boundary conditions (1.2) contains the coordinate 
xe, which corresponds to the transverse cross section of the crack, where the agent can be regarded as 
"fresh". We define the coordinate xe as the root of the equation 

xtft) xt(O) 
I h(~,t)d~= I h(~,O)d~ (1.4) xe(t) 0 

the right-hand side of which is equal to the volume of the agent entering the crack cavity before loading 
starts. Transfer of the boundary condition from the mouth of the crack to the boundaryx = xe enables 
us to reduce the volume of calculation somewhat when calculating the mass transfer. 

The problem of choosing the profile of the edge of the crack has been discussed in the literature 
mainly in the context of the relation between the aperture of the crack at the tip and at the mouth (12). 
Equations (1.1)-(1.4) contain the crack profile function h(x, t). Actual cracks have bends and branches 
(Fig. la) and are far from these idealizations, which are used in fracture mechanics. To analyse corrosion 
fatigue we need to give a schematic description of the form of the cavity occupied by the crack. In this 
paper we consider elliptical and trapezoidal profiles and a profile that is constant along the length of 
the opening, as shown in Figs l(b), (c) and (d), respectively. To determine the opening at the mouth 
of the crack and at its tip we will use the expressions 

h 0 = 4 Z ° t ~ * * a ( l - v 2 ) ,  h ,  - Ztc~a 
E E~ r (1.5) 

where cry is the yield stress, while the coefficients Z0 and Zt are of the order of unity. The formula for 
h0 corresponds approximately to linear fracture mechanics and the formula for ht gives the opening at 
the tip of the crack in the framework of the thin plastic zone model. This representation is justified for 
fairly deep cracks. 

We will investigate mass transfer of agent in the crack cavity by computational experiment. Since the 
growth of corrosion fatigue cracks is accompanied by the interaction of many processes, it is best to 
consider the mass transfer on the assumption that the crack growth process is specified. More exactly, 
we will specify the number of cycles N, before the crack starts to grow, i.e. the duration of the incubation 
stage, and the rate of advance of the tip daMN when N > N,. 

The change in the concentration of the agent at the tip of the crack is shown in Fig. 2 for different 
shapes of the crack cavity for the following values of the parameters: D = 10 -8 mZ/s, k = 10 -6 m/s and 
cs/cd = 0.1. Curve 1 corresponds to an elliptical shape, curve 2 corresponds to a trapezoidal cavity profile 
and curve 3 corresponds to a crack with a constant aperture along its length (Fig. 1). Although the crack 
tip does not move, the concentration at the tip decreases due to absorption on the crack surfaces. The 
concentration subsequently remains almost constant. 
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It should be noted that the change of concentration in a cycle is only shown at the initial stage, 
containing only 10 loading cycles. Henceforth, the behaviour will be represented by the envelopes, which 
show the maximum and minimum values of the agent concentration. So as not to crowd the figure, the 
envelopes are shown for one of the profiles; the behaviour of the envelopes in the remaining cases is 
easily established by analogy. Adsorption of the agent occurs most intensively if the crack has a profile 
of constant aperture along the length (curve 3). This profile enables the agent to diffuse to the crack 
tip more freely, which is a natural result. 

Neglect of the convective term in Eq. (1.1) does not lead to any appreciable change in the 
concentration of the agent at the tip either at the incubation stage or at the crack growth stage. The 
"pump" effect has a much greater influence. In Fig. 3(b) we show the change in the boundary of"fresh" 
agent for an elliptical cavity for values of the cycle asymmetry coefficient R = 0.25, 0.5 and 0.75. The 
greater the amplitude of the stresses the more intensively penetration of the aggressive agent into the 
crack cavity occurs (Fig. 3a). The fresh agent is displaced from the crack tip when o~ = o~, rain and fills 
almost the whole of the crack cavity when (~= = eL,, max. Hence the effect of closing of the crack during 
mass transfer of the medium in its cavity is taken into account. The boundary of the "fresh" agent at 
the crack growth stage approaches the crack tip, intensifying the reaction of newly arriving agent with 
the material. The nature of the change in the concentration and the coordinates of the boundary of 
fresh agent are shown in detail only at the, initial stage, which contains only 10 loading cycles. Henceforth 
the process is represented by the envelopes. 
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2. THE A C C U M U L A T I O N  OF DAMAGE 

We will use the simplest (scalar) model, first introduced by Kachanov and Rabotnov (13), to model the 
processes by which damage accumulates. They proposed to describe scattered mechanical damage using 
the scalar field co(x, t) where 0 ~< co(x, t) ~< 1. The lower boundary corresponds to the undamaged material 
and the upper boundary corresponds to the completely damaged material. Since then many 
generalizations have been proposed, including second, fourth- and higher-order tensors [14]. 
Nevertheless, the scalar model retains the advantages of considerable simplicity and clarity, and it is 
also possible to estimate the parameters of the model from a macroscopic experiment. This is particularly 
important when modelling corrosion fatigue, where it is necessary to distinguish different types of 
damage. Even when modelling purely mechanical fatigue it is necessary to distinguish between damage 
co: and cos from cyclic and slowly changing components of the loading, respectively. In the case of 
corrosion fatigue it is necessary to introduce additional measures, which distinguish between anode and 
cathode corrosion damage, hydrogen embrittlement etc. Without making this distinction, we will describe 
the level of corrosion damage by a scalar measure coc. In general we will use a set of scalar fields 
col(x, t) . . . .  , coy(X, t) [7]. 

We will assume that the damage accumulation is described by first-order differential equations. For 
a crack with a normal break (mode I) we will use an equation of the threshold-power form [4, 5, 7] 

]m/ m s m c at.Of .A,(~ -- A(~th acos = L((~--(~th ] ,  aO)c LfC--Cth I 
-~-N = ~ f f  ' at tc k. ~s  J at  = tc k " c a J 

(2.1) 

Here Aa is the range of breaking stresses at the tip of the crack and along its length, and ~ is the 
average or slowly varying component of this stress. The material parameters crf, cr~ and ca characterize 
the resistance of the material to damage from cyclic, slowly varying loads and an aggressive medium. 
We will denote the threshold values of the strengths by ACrth, ~th and Cth (when Aa < Aath, c < ~th and 
c < cth the right-hand sides of the corresponding equations should be equated to zero). The exponents 
my, rn~ and rn c are closely connected with the exponents of the fatigue curves of the growth of fatigue 
cracks and, under certain conditions [7], the exponents have close values. The last two equations of 
(2.1) contain a time constant tc which can be chosen from considerations of convenience. 

The stresses Aa and ~ depend on the conditions at the tip of the crack, which are characterized using 
the effective radius of curvature p. We will describe the change in this radius with time for a plane mode 
I crack with depth a by the equation 

dp _ p~ - p da d ( w  f + ~g~) -" d~gc (2.2) 
dt ~'a dt + ( p b - p )  dt ÷(Pc-H) dt 

This equation takes into account the sharpening of the tip to a value of Ps when there is accelerated 
growth of the crack and its blunting to a value of Pb and/or ps when the crack growth slows down. We 
have used the notation ~f, ~s and ~c for the values of the measures (of, cos and coc on the tip x = xt, and 
also the notation ka for the parameter, which has the dimensions of length. 

The use of relatively simple equations (2.1) and (2.2) encounters serious difficulties. Thus the range 
of stresses A~ and the average stress ~ depend on the damage level. Treating the measures or and cos 
as additive and the sum co = cof + cos as a measure of the cracking, it is natural to introduce into 
Eqs (2.1) the reduced stresses Aa/(1 - c0) and ~/(1 - co). Another method of taking the effect of damage 
into account is to postulate that the material parameters crf, AOth, etc. depend on the measures of damage. 
One other method consists of replacing the right-hand sides in Eqs (2.1) by more complex expressions 
containing measures of damage. For example, the first equation of (2.1) can be replaced by the following 
(nc > O, n: > 0). 

_ (l - coc)"c aco,  ( A ~ - A ~ t h / " S  
(2.3) 

In order to calculate the measures of damage we need to know the stress field in the vicinity of the 
crack tip. In general, this requires the use of numerical methods. However, there is a simple approach 
based on an analogy between the stress concentration factors × and the stress intensity factor K. For a 
plane mode I crack this analogy gives an approximate formula for the stress concentration factor at 
the tip and the stress distribution in front of the tip 
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/ o o.l  

These formulae generalize the well-known Neuber formula; the form factor Y is taken from the 
corresponding formula for the stress intensity factor. For an edge crack we can put Y = 1.12. 

To supplement Eqs (2.1)-(2.3) we need to have an equation which describes the kinetics of the change 
in the thickness X of the corrosion film. These kinetics are largely similar to the kinetics of the change 
in the radius 9 

d~ ~'s -~" da t.(~.b_~,)d(lll f +llIs) 
d-"~ = ~'a at  a t  + (~'~ - ~') d ~  c (2.5) 

Here ks, Xb and X¢ are characteristic dimensions, where the dimension Xa is analogous to the parameter 
occurring in Eq. (2.2). When ks < Xb <~ ~.c the parameter Xc can be interpreted as the maximum thickness 
of the corrosion film. All these parameters are small compared with the length of the crack a. As a rule 
they are also small compared with the dimension Xp of the zone in which intensive accumulation of 
mechanical damage occurs. This enables us to assume a linear distribution of the concentration c(x,  t) 
in the limits of the thickness of the corrosion film a ~< x ~< a + ~., which in turn enables us to confine 
ourselves to considering the concentration c; at the crack tip and the corresponding measure of damage 
W [11]. 

The effect of damage on the macroscopic parameters of the material is also extremely important. In 
this model their effect on the value of the crack resistance indicators is particularly important. We will 
take as the fundamental indicator the value of the specific work of fracture y. Since insufficient 
experimental data are available we will assume that the damage measures are additive. We can then 
assume that 

y = ,/011 - Z(o~f +tos +toe) '~ ] (2.6) 

where Y0 is the specific work of damage for the undamaged material, c~/> 1 and 0 < Z <~ 1. When 0~f 
+ c0s + c0c = 1 formula (2.6) gives a value of the residual work of fracture for the cavity of the damaged 
material. Note that formula (2.6) does not assume superposition of the damages. These measures are 
connected with one another in an extremely complex way, in particular by Eqs (2.1)-(2.4). 

3. A T H E O R Y  O F  C R A C K  G R O W T H  

To describe the growth of corrosion fatigue cracks we will use the theory in [4] and supplement 
its relations with equations which describe the mass transfer and damage accumulation processes. 
Consider the body-with-cracks load environment system. We will treat it as a mechanical system 
with unilateral constraints, which takes into account the irreversibility of cracks in ordinary 
structural materials. The stability of this system to small changes in the dimensions of the cracks will 
be investigated using the idea of Griffith variation [4]. This is an isochronous transition to mixed states 
of equilibrium in which only the crack parameters are subject to variation, and all the equations of 
deformation equilibrium and compatibility and all the boundary conditions are satisfied, apart from 
the conditions on the crack tips. The crack parameters a, . . . .  a m have the meaning of generalized 
coordinates, and, in view of the irreversibility of the cracks, their variations satisfy the conditions 
6aj >~0(j  = 1 . . . . .  m). 

We will call the state of the system a subequilibrium state if the virtual work of all the external and 
internal forces (calculated by Griffith variation) 8W < 0. We will call the state an equilibrium state if 
variations exist on which 8W = 0, and for the remaining variations 8W < 0, and a non-equilibrium state 
if variations exist on which 8W > 0. Subequilibrium states are stable, non-equilibrium states are unstable, 
while the stability of equilibrium states depends on the sign of 8(6W), where the second variation is 
calculated in the Griffith manner [4, 5, 7]. The equilibrium state of the body-with-cracks load system 
is stable if, for all variations, 8(8W) < 0, and unstable if variations exist for which 8(8W) > 0. 

We will represent the virtual work in the form 8W = 8 W  e + 8W t + 6Wf, where 8W e is the work of 
external forces, 8W, is the work of internal forces and 8 W f  is the work done in advancing the tip of the 
crack. Using the relations 
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~SW e +~SW/= ~ Gj~ j ,  ~SWy = - ~  F j~ j  (3.1) 
)=1 j=l 

we introduce two groups of generalized forces. Generalized forces Gj will be called active (forces which 
advance cracks) and generalized forces Fj will be called passive (resistance forces). A crack does not 
grow if all G 1 < ['/. If the equality Gk = Fk is attained for one of ak the crack may begin to grow. This 
growth will be stable if aGk/Oak < aFk/aak and unstable if OGk/Oak > OFk/Oak. If at least one of the 
relations between the generalized forces takes the form Gk > F~ the system becomes unstable with 
respect to the corresponding generalized coordinate. This indicates either final fracture of the body or 
a jump to the next subequilibrium (stable) state. 

The relations between the generalized forces change when the damage accumulates. A typical situation 
is where, at the start of loading, the system is in a subequilibrium state, The number of cycles N. for 
which the inequality G < F first breaks down corresponds to the beginning of crack growth. This growth 
can be both continuous and abrupt. The crack grows continuously if the mechanism by which the damage 
accumulates continuously satisfies the condition G = F, aG/aa < aF/aa. Abrupt growth is observed when 
the system transfers from one subequilibrium state to another. This occurs either due to overload, when 
the inequality G > F is satisfied, or due to gradual accumulation of damage. In the latter case a jump 
occurs when an unstable equilibrium state is reached, i.e. when the condition G = F, OG/Oa > OF/aa 
is reached [7]. 

In the case of fatigue cracks the generalized forces depend on the size of the crack, the loading 
parameters and the measures of mechanical damage. For corrosion fatigue they also depend on the 
measure of corrosion damage eOc(t) and the thickness of the corrosion film X(t). 

4. NUMERICAL EXAMPLES 

The computational procedure includes solving the problem of the mass transfer of agent from the mouth 
of the crack to its tip, calculation of the stress field at the tip and along its length, solution of the 
differential equations describing the damage accumulation, calculation of the characteristics of the 
material, taking the accumulated damage into account, calculation of the active generalized forces and 
the generalized resistance forces, and a check of the stability of the system with respect to small 
increments in the crack length. If the crack advances by a small step, the whole procedure is repeated 
for the new crack configuration. One of the features of the calculations is the use of two time scales. 
In order to describe the motion of the agent in the crack cavity when there is a cyclic change in its volume, 
it is necessary to use "fast" time, splitting the cycle duration into 10 or more steps. The damage 
accumulation and the crack growth can be described by treating the number of cycles N as a continuous 
parameter. In particular, the relations between the generalized forces can be considered using the 
maximum difference between the generalized forces in the limits of the cycle tN-] < t <<- tN: 

H(N)= max {G[a(t), cry(t), ~(t)]-F[a(t) ,  ¢s~(t), ~(t)} (4.1) 
i N _  1 < l ~ l  N 

Here ~(t) is the set of all parameters characterizing the level of damage at the tip, the effective radius 
of curvature and the thickness of the corrosion film. The crack does not grow when H(N) < 0 and grows 
stable when H(N) = 0, OH(N)/Oa < 0. In order to avoid the use of two time scales and excessive costs 
in computer time, beginning with a certain N it is best to solve the mass-transfer problem in a "slow" 
time scale. In this case the first of boundary conditions (1.2) is formulated for a value Of Xe corresponding 
to the mean position of the boundary of "fresh" agent within a cycle. 

It was shown in [15, 16] that the effect of damage on the value of the active generalized force can 
be neglected. The dimensions of the plastic zone will be assumed small compared with the depth of 
the crack, and the material will be assumed to be linearly elastic. As it applies to a mode I crack this 
means that Irwin's formula is applicable, namely, 

G= K2(I -v2) (4.2) 
E 

where K = Yt~(xa)  1/2 is the stress intensity factor for the edge of the crack with form factor 
Y = 1.12, E is Young's modulus and v is Poisson's ratio. For the generalized resistance force we use 
expression (2.6) 



1008 V.V. Bolotin and A. A. Shipkov 

I" = Y0[l - Z(~f  + Us + ~c)  ~ ] (4.3) 

where ~tf, Us and ~c are the values of the corresponding measures of damage at the crack tip. 
Calculations were carried out for the following data: E = 200 GPa, v = 0.3, Y0 = 10 kJ/m 2 and 

¢z = Z = 1. The parameters in the damage accumulations equations (2.1) were taken as follows: 
af = os = 5 GPa, Aath = 125 MPa, ¢~th = 250 MPa, and m f  = m s = m c = 4. The parameter c d is used 
for normalization, i.e. all values of the concentration are expressed in terms of the ratio C/Cd. To describe 
the mass transfer we took the numerical data used above. In Eq. (2.2) we assumed that p~ = 10 ~tm 
and Pb = ~.a = 100 p.m. Most of the quantities used were not estimated directly by experiment; their 
values were chosen in such a way that the final results were in agreement with published experimental 
data [2, 16, 17]. 

The concentration at the mouth of the crack will be specified by the ratio Ce/C a. This ratio, and also 
the extremal value of the applied stresses, will be assumed constant during the whole process of the 
production and growth of the crack. We will assume that the stress ¢r~ can be expressed in terms of its 
range A¢~o. and the cycle asymmetry factor R. All the graphs presented below were obtained for 
A¢~ = 150 MPa and R = 0.5. The loading frequency was taken to b e f  = 10 -2 Hz. Figure 6 (see below) 
is an exception; it was constructed for different values of the frequency. 

The growth of a corrosion fatigue crack for different concentrations of the active agent is shown in 
Fig. 4. Curves 1-5 are drawn for dimensionless parameters CJCd = 0, 0.25, 0.5, 0.75 and 1, respectively, 
i.e. beginning from the case of a neutral medium to a medium of high concentration. However, one 
can interpret these curves as referring to agents of different chemical composition. The change in the 
depth of the crack as a function of the number of cycles is shown in Fig. 4(a). A graph similar to the 
generally accepted curve of the growth of fatigue cracks is shown in Fig. 4(b), where the rate of growth 

1/2 d a / d N  is represented as a function of the range of the intensity factor AK = Y A a ~ ( n a )  . Some irregularity 
in the form of the non-monotonic dependence of the rate on the number of cycles is observed on the 
initial parts of the graphs. Hence on these parts we must carry out a numerical integration with a short 
time step. The irregularity later disappears, which enables us to change to integration in blocks. To 
economise on computer time the boundary condition for the diffusion equation is transferred to the 
boundary of the "fresh" agent in the middle of the loading cycle. For a high concentration of agent the 
growth of short cracks is mainly controlled by corrosion damage. When the crack becomes fairly deep, 
mechanical damage becomes decisive. This can be seen in Fig. 4(b), where the curves corresponding 
to different Ce/¢ d show a tendency to converge as AK increases. The slope of the middle part of the curves 
(i.e. the analogue of the Paris factor for the usual diagrams of the growth of fatigue cracks) is close to 
the value m = 4. We recall, that in this numerical example rn s = m f  = m c  = 4. 

The relation between the measures of damage, or, more exactly, between their contribution to the 
overall measure ~ = uls + ~f + ~c, depends on the level of damage and the concentration of the agent. 
The growth of a corrosion fatigue crack includes, generally speaking, a component which describes 
corrosion cracking, the contribution of which depends very much on the frequency. The ratio between 
the individual components varies as the crack grows, as illustrated in Fig. 5, where we show three 
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measures of damage, one of  which corresponds to the contribution of constant stresses. Figure 5(a) 
was drawn for Ce/C a = 0.25 and Fig. 5(b) for Ce/C a = 1. The overall measure of damage increases while 
the crack tip is motionless, and begins to decrease as the crack tip advances, reaching small values at 
the instant of final fracture. The contribution of each type of damage depends on the agent concentration, 
the ratio between the duration of the cycle and the characteristic mass transfer time and on the range 
of applied stresses and on the cycle asymmetry factor. In the example considered, the contribution of 
the damage from the slowly varying part of the stresses is comparable with the contribution of the cyclic 
stresses. The corrosion component of the stress increases, at an early stage and decreases as the crack 
grows. 

The loading frequency is also an important factor. Corrosion develops in physical time, while 
mechanical damage increases as the number of cycles increases. Measuring the crack growth rate 
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as da/dN naturally represents it as a function of AK. If the crack growth rate is measured as da/dt, 
it is natural to consider it as a function of the maximum value of the intensity factor within a cycle. 
Figure 6 shows two .types of diagrams, constructed for Aa** = 150 MPa, R = 0.5, Ce/C d = 1 and loading 
frequencies f = 10 -3, 10 -2, 10 -1 and 1 Hz (curves 1-4, respectively). In Fig. 6 the crack growth rate is 
represented as a function of AK (a) and as a function of Kmax = AK(1 - R )  -1 (b). 

The effect of the frequency is considerable. When the frequency f changes from 10 -3 to  1 Hz the 
difference in the rates may reach two orders or more. The way the curves diverge depends on the method 
used to measure the rate. In Fig. 6(a) the crack growth rate is specified as da/dN while in Fig. 6(b) it 
is specified as da/dt. At low loading frequencies there is a tendency for a plateau to form on the growth 
diagrams in the graphs of da/dN against AK. This occurs due to the predominance of the corrosion 
mechanism in the early stage. Final fracture occurs close to values of AK = Kc(1 - R) or Kmax = Kc, 
where K¢ is the crack resistance characteristic for the undamaged material. 

The proposed model is phenomenological, particularly in the part relating to physical and physico- 
chemical processes. Many parameters of the model are not amenable to a direct experimental estimate, 
although, in principle, they can be determined from the data of a macroscopic experiment. The final 
results, represented in the form of diagrams of fatigue crack growth, are in qualitative agreement with 
existing experimental data [17, 18]. With a successful choice of the "free" parameters of the model one 
can obtain quantitative agreement. However, the purpose of this paper is not to replace tests on corrosion 
fatigue (which, anyway, are of a relatively routine nature), but to clarify the mechanisms by which the 
various processes which accompany corrosion fatigue crack growth interact. 

This research was partially supported by the Russian Foundation for Basic Research (99-01-00282, 
00-15-96138 and 01-01-06105). 
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